

CLEAN WATER AND RENEWABLES

Village Power 2000

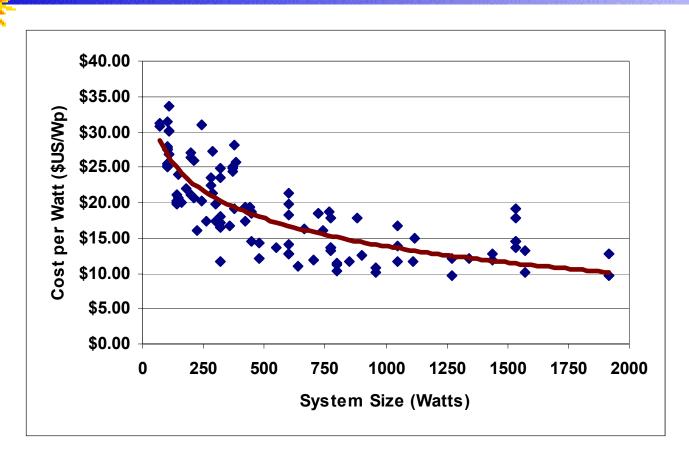
Robert Foster
Southwest Technology Development Institute
College of Engineering
New Mexico State University
http://www.nmsu.edu/~tdi

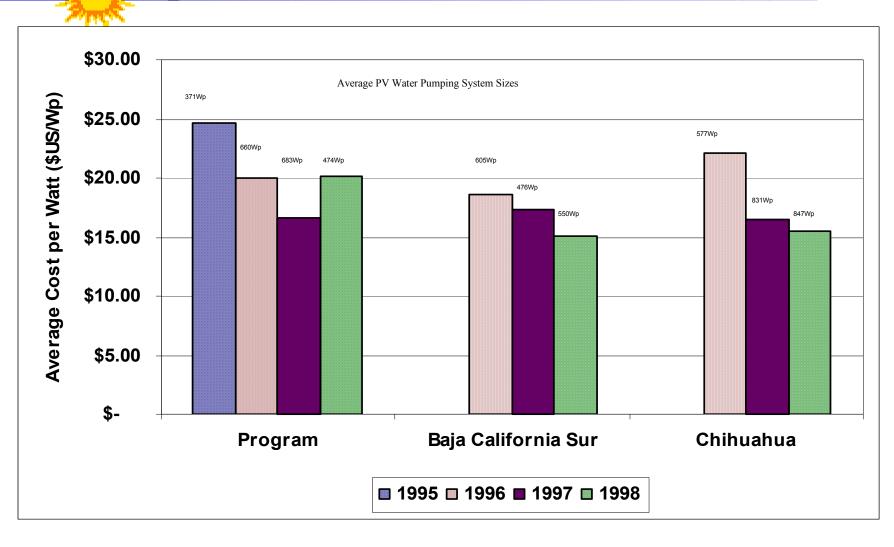
Clean Water Supply

- Requirements for Successful RE Development
- PV Water Pumping
- Water Purification
 - Aeration
 - Boiling
 - Chlorination
 - Filters (carbon, sand, resin)

- Deionization
- Ultraviolet
- Reverse Osmosis
- Ozonation
- Mixed Oxidants
- Distillation
- Economic Comparison
- Effectiveness Comparison

PV Water Pumping


- Select most appropriate option (e.g, gravity feed, manual pumps)
- PV WP Applications
 - Domestic water supply
 - Livestock water supply
 - Small scale Irrigation

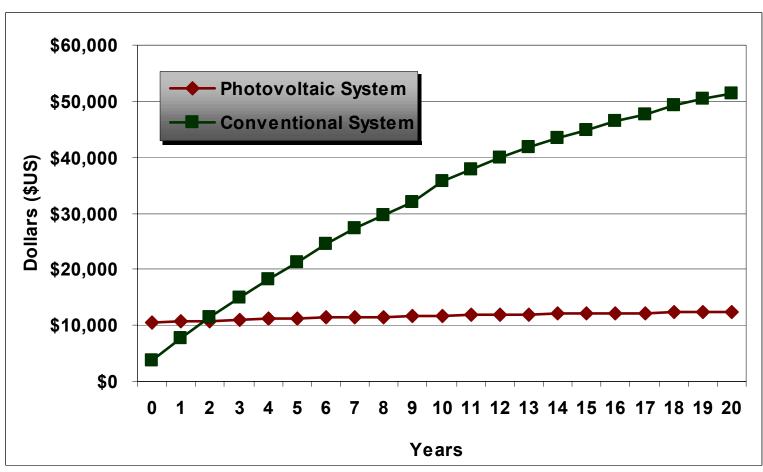

PV Water Pumping

PV Water Pumpers for remote non-electrified sites are in general competitive when under 2 kW in size

Mexico program database shows that prices decrease as markets mature

Life-Cycle Cost Analysis Case Study-El Jeromín, Chihuahua

BEFORE



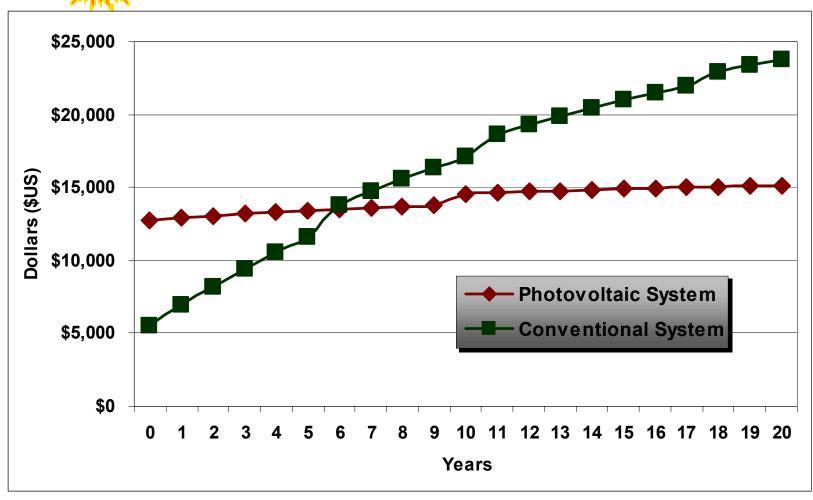
AFTER

- 848 Wp PV system installed in March 1997 with no maintenance since
 - 16 Solarex VRX-53 modules
 - Grundfos SP3A-10 pump
 - SA-1500 controller
- Cattle Ranch with desert vegetation
- 15,000 liters of water per day

Case Study - El Jeromín, Chihuahua *Results**

• After 2.5 years, the PV system represents a lower overall expense to the user

Life-Cycle Cost Analysis Case Study-Agua Blanca, BCS


- 800 Wp PV system installed March 1998
 - 10 Kyocera KC-80 modules
 - SolarJack SCS-14-160pump and controller
- Livestock/irrigation ranch 1,001 hectares
- Requirement 25,000 liters per day

Case Study - Agua Blanca, BCS Results

• Six years after installation, the PV system represents a lower overall expense to the owner

Aeration

- Diffuse air into the water to oxidize metals such as manganese and iron
- Oxidize wastewater to reduce Biological Oxygen Demand (BOD)

- Pros
 - Simple and effective at removing some metals
- Cons
 - Does not disinfect or purify water otherwise

Boiling

 Boil water to kill harmful microbiological contaminants

Pros

 Simple and effective in eliminating microorganisms (bacteria and parasites)

Cons

- High energy inputs for small volume
- No residual disinfection
- Does not eliminate salts and minerals

Chlorination

- Uses chlorine species to kill microorganisms
- Pros
 - Effective disinfection
 - Provides residual disinfection

- Cons
 - No salt and mineral removal
 - Chlorinationbyproducts (THMs)
 - Requires chemical supply

Filters

Sand Filter

- Removes suspended solids
- No disinfection or dissolved solids removal

Carbon Filter

- Removes organic contaminants(gasoline, MTBE, pesticides)
- No disinfection or dissolved solids removal

• Resin Filter (softener)

- Removes calcium, magnesium, iron
- No disinfection or dissolved solids removal

Deionization

- Removes charged ions from the water using anionic and cationic resin.
 - First step cationic removal
 - Second step anionic removal

- Pros
 - Produces high quality water
 - Removes salts and minerals
- Cons
 - No disinfection
 - No residual
 - Resin regeneration chemicals required (NaCl or NaOH)

Reverse Osmosis

- Uses osmotic pressure to remove impurities
- Pros
 - Produces high quality water
 - Removes salts and minerals
 - Removes microorganisms

- Cons
 - High energy inputs
 - High maintenance (membrane replacements)
 - No residual

UV

- Uses ultaviolet light to disinfect water
- Pros
 - Eliminates microorganisms without chemical addition

- Cons
 - No residual
 - No salts and minerals removed
 - Should replace UVbulb every year
 - Less effective in the presence of suspended solids

Solar UV

Ozonation

• Uses electricity and air to create ozone for disinfection

- Pros
 - Strong disinfection capability
- Cons
 - No salt or minerals removed
 - No residual
 - High energy inputs

Mixed Oxidants

- Mixed oxidants is a combination of
 - Ozone
 - Chlorine dioxide
 - Chlorine
- Electrodialysis of NaCl to produce oxidants

Pros

- Strong disinfecting solution
- Provides residual disinfection capacity

Cons

- Does not remove dissolved minerals
- Significant operator interface required
- High energy inputs
- Requires pure salt to operate

Solar Mixed Oxidants

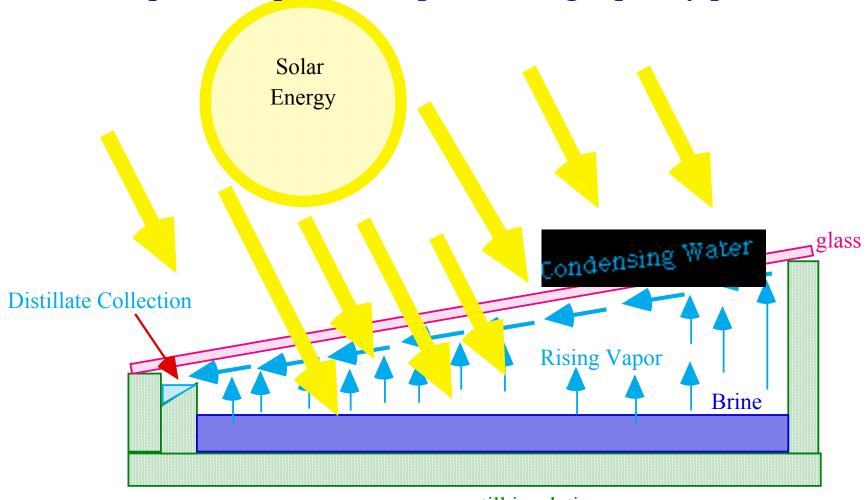
MO Solution

25,000 gpd capacity

Distillation

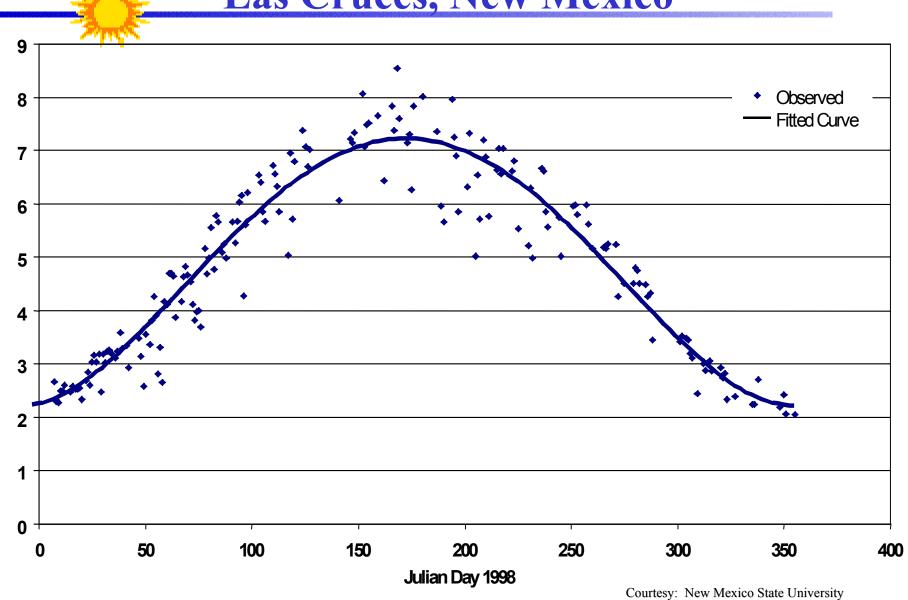
- Distillation is effective in removing
 - Salts/Minerals (e.g., Na,Ca, As, Fl, Fe, Mn)
 - Bacteria (e.g., E. Coli, Cholera, Botulinus)
 - Parasites (e.g., Giardia, Cryptosporidium)
 - Heavy Metals (e.g., Pb,Cd, Hg)

Pros

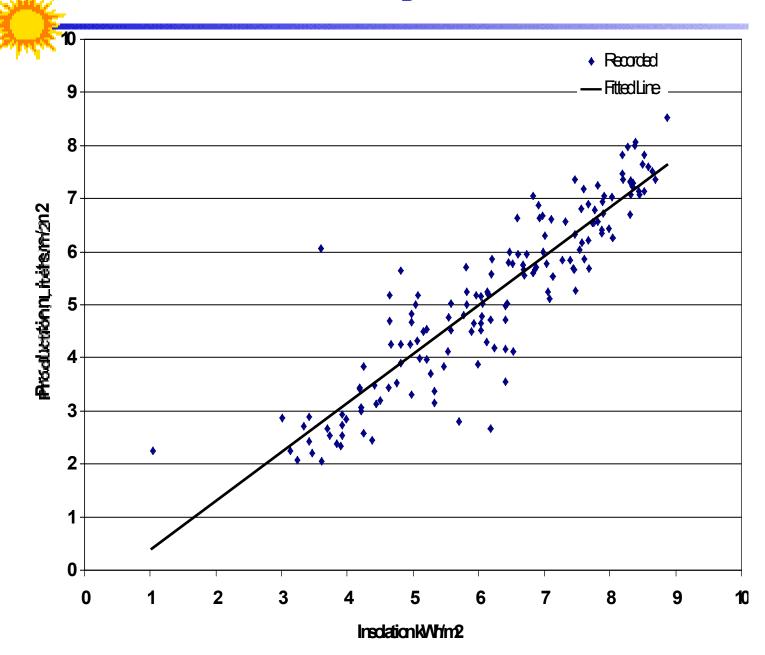

- High Water Quality
- Solar Energy Easily Used
- No Moving Parts
- Long Life
- Simple to Operate
- Simple to Maintain
- Low Life Cycle Cost
- Can be Automated

Cons

- Small Product Volume
- Potential VOC Carryover if no carbon filter used
- No Residual


Solar Still Operation

Natural Evaporation process to produce high quality potable water



still insulation

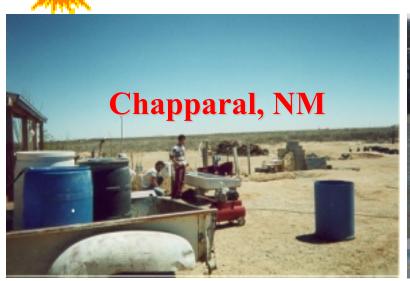
Annual Solar Still Production Las Cruces, New Mexico

Water Production Compared to Solar Insolation

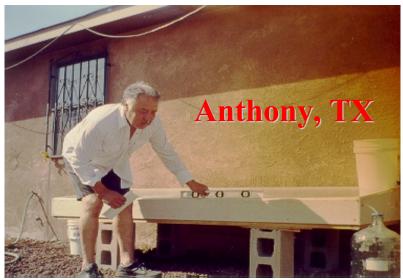
Water Quality Results

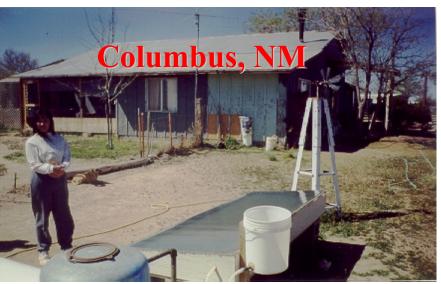
Sandia National Laboratories

SampleType	13%salinity		v	SolarDistilled	
	feedwater	water(13%case)	teedwater	water(16%case)	
Calcium(total)	340	1.5	371	<0.10	
Iron(total)	0.27	<0.05	0.48	<0.06	
Magnesiun(total)	2.1	2.1	< 0.005	<0.005	
Manganes (total)	0.04	<0.02	0.07	<0.02	
Ammoni a s N	<0.1	0.1	<0.1	<0.1	
Chloride	19000	<1.0	25000	2.6	
FixedSolids	32000	<1.0	41000	31	
Nitrateas NO3	34	0.1	26	<0.1	
Nitrateas NO2	0.013	<0.01	0.02	<0.01	
TDS	36000	<1.0	48000	<1.0	
Volatiles & Organic	4200	<1.0	6000	13	

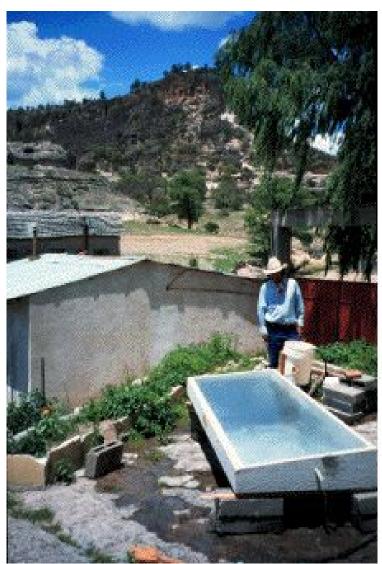

Water Quality Test Results

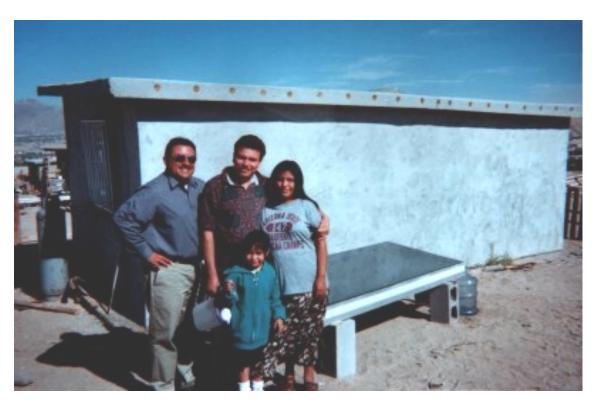
New Mexico State University


Field 8II Ref. No.	Condu điv ty, μS/c m	Hardnes,s mg/LaCO3	Fluorid e, mg/ L	pН
# 2 Cinput	1190	2 6 0	6.2	7.9
# 2 Obutput	4.8	4	0.1	9.2
# 2 2input	1180	2 5 0	8.2	7.4
# 2 2output	1.8	0	0.1 0	9.1
# 2 Sinput	1 2 0 0	2 5 0	6.0	8.1
# 2 Soutput	5.8	8	0	8.8
# 3 anput	2 3 9 0	480	n/a	6.8
#3 Obutput	4	4	n/a	9.4


Sample	Volume Tested	Total Organisms per		
	ml	liter		
Supply	50	16,000		
Distillate	1,000	4 (No <i>E. coli</i>)		
E. coli Seed		2,900,000,000		
Distillate	750	11 (No <i>E. coli</i>)		
E. coli Seed		7,500,000,000		
Distillate	1,000	18 (No <i>E. coli</i>)		
Supply	10	24,000		
Distillate	1,000	13 (No <i>E. coli</i>)		
Supply	1	12,000		
Distillate	1,000	6 (No <i>E. coli</i>)		

U.S. Applications in the Southwest


Applications in Chihuahua, Mexico


Cd. Juárez Orphanage

Tarahumara Indian Rural Health Clinic, Norogachi

Anapra Colonia, Cd. Juárez, Mexico

The Valdez family used to buy water at 13 pesos every 3 days (~US\$175/year). They believe that the still water tastes better than store-bought water and now they have more water. Simple still payback is 3.7 years for them.

Technology Cost Comparison: Amortization 7% for 10 years

Method(\$	Ini ital Cost	Ini ital Cost	Replacement Parts	Power Cost	Tota Cost
Ê	per month (\$)	per gallon (\$)	per gallon (\$)	per gallon (\$)	Per ga llon (\$)
R.O. 4 stgs .	9. 2	0. 23	0. 10		0. 2
R.O. 4 stgs .	8. 7	0. 1 6	0. 8 6		0. 20
R.O. 3 stgs .	6. 73	0. 90	0. 9 4		0. 8
Dist -E e c.	5. 6	0. σ 6	0	0. 3	0. 4
Dist -E ect .	16 22	0. 216	0	0. 3	0. <i>5</i>
Dist -E ect .	20 89	0. 7 9	0	0. 3	0. 6
Solar sti I 1.7 m²)	8. 2	0. 10	0		0. 1
Solar sti I (many)	5. 🗸	0. 7 4	0		ο. σ
Bott e d Water	0. 0	0. 00	0	0	0. 25

Clean Water Technology Effectiveness Comparison

Pollutant	Purification		Crossover		Disinfection					
	Carbon Filter	Deionization	RO	Distillation	Boiling	Chlorination	UV*	Ozonation	Mixed Ox	
Arsenic										
Bacteria										
Cadmium										
Calcium										
Chlorides										
Chlorine										
Crypto										
Detergents										
Fluoride										
Iron										
Lead										
Mercury										
Nitrate										
Organics										
Pesticides										
Sediement										
Sodium/Salt										
Viruses										
Residual										

